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Measuring the interface tension
when the electroweak phase transition becomes weak
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Abstract. We measure the interface tension near the phase transition endpoint of the 3d SU(2)–Higgs
model. The tunnel correlation length method is used and compared to other approaches. A modified
scaling behaviour for the mass gap as function of the transverse area is proposed.

1 Introduction

It is now almost established that the symmetry restor-
ing electroweak phase transition changes into a smooth
crossover if the mass of the so far elusive Higgs particle
would be equal to the W-mass (or less within 10 per cent)
[1–4]. This emerges from lattice studies in the effective
3-dimensional model as well as from 4-dimensional simu-
lations, the latter so far only with a rough lattice spacing
of order O(1/(2T )) with temperature T .

In order to quantify the strength of the first order tran-
sition near to the critical Higgs mass several quantities
have been considered. Measuring the discontinuity of the
Higgs condensate is practically tantamount (in three di-
mensions) to calculating the latent heat. Both quantities
are easy to obtain but are very sensitive to finite volume
effects. It is even more difficult to measure the interface
tension for weak transitions. This we have observed in our
recent work [5] where we have estimated the interface ten-
sion for a Higgs mass near to its critical value.

In the literature mainly three methods are discussed
to extract the interface tension from Monte Carlo studies.
In the present work we shall employ and critically discuss
the tunneling correlation length method [6,7], which has
been used so far only in the analysis of 4–dimensional
simulations [8,9] in the context of the electroweak phase
transition.

In Sect. 2 we define the model and discuss the methods
used to extract the interface tension. The results obtained
by the tunneling correlation method are presented and
critically discussed in Sect. 3. They are put into perspec-
tive with all available lattice measurements for arbitrary
Higgs masses in Sect. 4, which contains also our conclusion
on the capability of the method.

2 The model and how to measure
the interface tension

The model under study is a 3–dimensional SU(2)–Higgs
system with one complex Higgs doublet of variable modu-
lus. The gauge fields are represented by unitary 2× 2 link
matrices Ux,α and the Higgs fields are written as Φx =
ρxVx. ρ2

x = 1
2 tr(Φ+

x Φx) is the Higgs modulus squared, Vx
an element of the group SU(2), Up denotes the SU(2)
plaquette matrix. The lattice action is

S = βG
∑
p

(
1− 1

2
trUp

)− βH
∑

l=(x,α)

1
2
tr(Φ+

x Ux,αΦx+α)

+
∑
x

(
ρ2
x + βR(ρ2

x − 1)2
)

(1)

(summed over plaquettes p, links l and sites x), with the
gauge coupling βG, the lattice Higgs self–coupling βR and
the hopping parameter βH . To relate the lattice couplings
to continuum quantities the notations of [5] are used.

Let us recall the procedures used for extracting the
interface tension of the electroweak phase transition. The
first one, the two–coupling method, requires a careful ex-
trapolation to the limits βHc ± ε of simulations in two
coupled subvolumes [9–12] supposed to be kept in the two
phases. The variants differ in the way this limit is taken.
In our version of the method [11] we have used a simulta-
neous multihistogram technique for a system consisting of
two parts in order to estimate the free energy difference
between the homogeneous and mixed states at βHc.

The majority of results for the interface tension has
been obtained with the second method based on the two–
state signal in the histogram of an order parameter like
quantity o [10,13,5,3]. Here the whole system is simu-
lated at the pseudocritical point. The bulk variable under
consideration is, say, the volume average of the modulus
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squared o = 1
2 tr(Φ+Φ) or the average link o = 1

2 tr(Φ+UΦ).
Usually, the interface tension α is estimated comparing
the minimum and the two maxima of the doubly peaked
histogram p(o) by

αa2/Tc = 1/
(
2L2) log (pmax/pmin) , (2)

where L is a typical linear extension of a surface eventu-
ally dividing the system into different phases (the smaller
extensions of a cylindrical system), a denotes the lattice
spacing and Tc the corresponding transition temperature.
Different entropy factors in the thermodynamic weight of
the mixed state have been ignored for simplicity in (2),
but are necessary to extract a reasonable estimate for
the interface tension, in particular if histogram data of
lattices with various geometries are used simultaneously
[14]. Applying a formula like (2) one tacitly assumes that
(i) the order parameter o is well–chosen in order to yield
a histogram with clearly separated maxima and a broad
minimum in between, (ii) the case of equal height of the
maxima is near to the phase equilibrium, (iii) a minimal
surface spanning through the lattice separates the pure
phases from each other.

Lattice studies of the electroweak transition in the case
of the Standard Model for realistic values of the Higgs
mass are known to possess a transition which is very asym-
metric and weak. Therefore the conditions (i) to (iii) are
hardly fulfilled. By ”asymmetric” we mean that the fluctu-
ations of suitable order parameters o are stronger in one
(the Higgs) phase than in the other (symmetric) phase.
This fact makes it more and more difficult to use his-
togram methods based on (2) when approaching the crit-
ical Higgs mass.

In order to cope with overlapping histograms we have
recently proposed a method to split histograms p(o) into
pure phase and mixed phase contributions [5] even under
realistic circumstances of a very weak transition. This has
enabled us to employ the histogram reweighting technique
to find the pseudocritical coupling by the equal weight cri-
terion. As a by–product, we have also obtained the latent
heat from the variation of both pure phase thermodynamic
weights near to the transition point and the thermody-
namic weight of mixed states. Extracting, however, the
interface tension from the relative weights of pure and
mixed phases still depends on the simplifying assumption
(iii) above. Collecting data from lattices with different as-
pect ratios and extrapolating in the smallest linear exten-
sion to infinity we [5] obtained at the physical Higgs mass
mH = 64.77 GeV (which corresponds to Tc = 150.9 GeV)
for the SU(2)–Higgs theory without fermions an estimate
of α/T 3

c = 2.1× 10−4.
All methods discussed so far are focusing on changes

of (volume or subvolume) averaged variables o in mixed
phase systems with minimal interfaces. There is a third
method [6,7] to deduce the interface tension α from a tun-
neling correlation length ξtunnel at the phase transition.
To be more precise, it is the dependence of this correlation
length on the geometry of the system which allows to ex-
tract α. A first test of the credibility of the method in the
case of the electroweak phase transition has been under-

taken in [8] far from the critical Higgs mass and in [9] at
even smaller Higgs mass, both within the 4–dimensional
framework.

In contrast to measurements of the temperature de-
pendent Higgs mass on both sides of the transition [5]
(which requires to separate pure phase samples) the em-
phasis is here on correlations due to different phases in
coexistence. The tunneling correlation length is measured
in a very elongated volume L2 × Lz, stretched along the
z–direction. In 4–dimensional simulations the additional
Euclidean temporal extent is understood to represent the
(inverse) temperature and cannot be modified in prac-
tice. The connected correlator Cconn(z1 − z2) of o(z) =∑

x δx3,z tr (Φ+
x Φx) between two equal–z slices defines the

correlation length ξtunnel which is expected to vary with
the transversal extent of the lattice as

ξtunnel ∝ exp (α3A) , A = (aL)2 . (3)

The interface tension of the original 4–dimensional theory
α is related to α3 through α = α3Tc.

Using a semiclassical expansion for a scalar ϕ4 theory
in 3d including quadratic fluctuations around a kink so-
lution [7], the mass (energy) gap m = ξ−1

tunnel has been
calculated (in lattice units) as

mlat = m a = C
√
αa2/Tc exp

(−αL2a2/Tc
)

(4)

with no additional L dependence in front of the exponent.
Therefore, expressed in terms of the dimensionless param-
eter

x = αL2a2/Tc , (5)

the following scaling behaviour is expected to hold for the
tunneling correlation lengths (if they are measured in units
given by the transverse lattice size)

mlat L = C
√
x exp(−x) . (6)

Strictly speaking, this result is valid for systems within
the universality class of the Ising model, but it has been
confronted with the 4–dimensional SU(2)–Higgs model in
[8]. In this first application in the electroweak context (at
smaller Higgs mass and, consequently, higher α) it has
been shown that the simple perturbative one–loop result
(4) is reached from above with increasing transverse lat-
tice size and is valid only beyond x ' 1 (cf. Fig. 4 below).
It has been argued already in [15] that higher order cor-
rections may lead to a pre–exponential power in L with
an exponent different from zero in (4)1. Concentrating on
the roughening of the interface in a capillary wave model
beyond the Gaussian approximation [17] it has been found
that (4) gets a correction factor (1 + O

(
Tc/(αL2a2)

)
).

Recall also that in all derivations it has been assumed
that the tunneling correlation length is much larger than
the typical correlation lengths in the pure phases. In our
recent studies at a physical Higgs mass of roughly 65 GeV
[5] we have measured the Higgs correlation lengths near

1 This has been confirmed in a recent two–loop calculation
[16]
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to the phase transition in the pure phases as ξbroken/a =
13.40(41) and ξsymm/a = 9.71(29) which are not so small
compared to the tunneling correlation length 1/(mlata) as
one will see later. Furthermore we have visualised there a
typical mixed–phase configuration which had very rough
interfaces separating different phases.

Therefore, in order to extract an interface tension at
this very weak first order transition (with very rough in-
terfaces) we assume that the tunneling mass gap can be
parametrised in a more general form as function of the
transverse extent L

mlat L = c Lγ exp
(− αlat L

2) , (7)

with the fit parameters c, γ and αlat. Using the 3d contin-
uum gauge coupling g2

3 = 4/(βGa), we can put αlat into
relation to the 3d dimensionless interface tension α3/g

4
3

by
α3/g

4
3 = (βG/4)2 αlat . (8)

As a check of this assumption we have to compare the
interface tension with the result of other methods when
these are available.

3 Results and discussion

The lattice model (2) is used as in [5], in particular with
the same update algorithm as described there. We are
dealing with the two cases corresponding to the Higgs
masses M∗

H = 70 and M∗
H = 57.4423 GeV (denoted in the

following by 57 GeV). These cases correspond to λ3/g
2
3 ≈

0.095703 and λ3/g
2
3 ≈ 0.0644457, respectively (λ3 is the

3d continuum Higgs self coupling) via

λ3/g
2
3 = 1/8 (M∗

H/80GeV )2 . (9)

The Higgs mass M∗
H (in GeV) differs numerically only

slightly from the physical Higgs mass mH in the 4d theory
without top.

The smaller Higgs mass is chosen in accordance with
the work [13] (in their notation referred to as m∗

H =
60 GeV). Correlation function measurements have been
taken after each 10th iteration. The maximum of the inte-
grated autocorrelation time for this quantity was about 26
at the smaller Higgs mass and 16 at the larger Higgs mass
(each in case of the largest measured transverse size).

To obtain the tunneling correlation length ξtunnel re-
quires some tuning. At first, the appropriate hopping pa-
rameter value βH has to be tuned, separately for each
transverse size of the system while keeping near to the
bulk critical value βHc, to the maximum of the tunneling
correlation length. The actual longitudinal size of the lat-
tice has been chosen three to four times larger than the
correlation length one is going to measure.

In the tables we quote the statistics for all lattice ge-
ometries L2×Lz at the respective βH (having the maximal
tunneling correlation length) and its corresponding value
mlat. We indicate also the inverse transverse correlation
length m⊥ lat and the total statistics which went into the

Fig. 1. Inverse correlation length at M∗
H = 70 GeV and 122×

64 as function of βH

Fig. 2. Fits for the inverse tunneling correlation lengths at
M∗

H = 57 GeV (circles) and M∗
H = 70 GeV (squares)

search for the minimum. Additionally, we have checked at
the larger Higgs mass for geometries 122×96 and 202×128
that mlat does not change within the errors for larger Lz.

In order to extract the correlation length ξtunnel we
first check by inspection whether the local mass has a
plateau. We define a local lattice mass mlat(z) at corre-
lation distance z through a fit of three subsequent values
Cconn(z−1), Cconn(z) and Cconn(z+1) of the correlation
functions of o(z) =

∑
x δx3,z tr (Φ+

x Φx) to a hyperbolic
cosine shape

A {exp [−mlat(z) z] + exp [−mlat(z) (Lz − z)]}. (10)

This ansatz is essential in order to observe a plateau in the
local mass versus z. In Fig. 3 mlat(z) is shown for one par-
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Table 1. Statistics at M∗
H = 57 GeV

L2 × Lz mlat # msmts βH m⊥lat total # msmts
42 × 32 .2180(106) 8000 .343600 — 36000
62 × 64 .1543(117) 10000 .343000 — 24000
82 × 64 .1165(081) 6000 .342700 — 8000
102 × 64 .09150(531) 6000 .342700 .1008(29) 10000
122 × 64 .07060(339) 6000 .342694 .0782(21) 12000
142 × 96 .05200(380) 10000 .342700 .0632(21) 19000
162 × 128 .04195(286) 10000 .342688 .0509(15) 21000
182 × 128 .03517(331) 12000 .342686 .0425(14) 20000

Table 2. Statistics at M∗
H = 70 GeV

L2 × Lz mlat # msmts βH m⊥lat total # msmts
42 × 128 .276(6) 3000 .345000 — 18400
62 × 64 .1933(044) 10000 .344200 — 60000
82 × 64 .1489(053) 20000 .343800 — 40000
102 × 64 .1174(043) 25000 .343540 .1345(17) 80000
122 × 64 .09530(278) 50000 .343540 .1080(13) 110000
142 × 64 .08031(267) 25000 .343540 .0889(16) 25000
162 × 64 .06910(154) 25000 .343540 .0761(09) 40000
202 × 64 .05367(163) 15000 .343560 .0599(12) 51000

Fig. 3. Example of the local lattice mass at M∗
H = 57 GeV

and 162 × 128 as function of z

ticular example. We contrast this with a local mass defined
through a single exponential fit to the three neighbouring
values of Cconn(z) above. No plateau at all can be iden-
tified using the latter definition of a local mass. Finally,
the (inverse of the) correlation length ξtunnel is obtained
by a global hyperbolic cosine fit over the plateau range
that we have identified. The behaviour of the inverse cor-
relation length near to its lowest value is demonstrated in
Fig. 1. In Fig. 2 we show the inverse tunneling correlation
length multiplied by the transverse extension, mlat L as
function of the transverse lattice area L2 for both values
of the Higgs mass under discussion. The strongly different
exponential slopes reflect the weakening of the phase tran-
sition. The curves correspond to a least square fit with the
ansatz (7).

From this fit we extract the dimensionless 3d inter-
face tensions α3/g

4
3 = 0.0224(56) for the lower Higgs mass

M∗
H = 57 GeV, and α3/g

4
3 = 0.0049(18) for M∗

H =
70 GeV. The first number is in very good agreement with
the value presented in Fig. 15 of [13] (and – with the use
of Eqs. (11.6) and (2.8) there – translated into) α3/g

4
3 =

0.0217(22).
Using these numbers we find the interface tensions α

α/T 3
c = 3.24(80)× 10−3, M∗

H = 57GeV (11)

and
α/T 3

c = 70(26)× 10−5, M∗
H = 70GeV (12)

corresponding to the 4–dimensional model without top
quark. Taking into account the top quark the numbers
change to 3.57(89) × 10−3 and 77(29) × 10−5. The rela-
tions between 3–dimensional and 4–dimensional quanti-
ties have been obtained as in [5] using (in the same no-
tations as there) Table 3 which is recalculated here for
M∗

H = 57 GeV. Though the top contribution apparently
changes the interface tension only insignificantly (∆g is
small) some of the fermionic one-loop corrections to the
4d couplings are already too large and the other physical
numbers should be taken with great care. The reported
pseudocritical βH values for the largest transverse sizes
from Tables 1 and 2 are related to critical temperatures
Tc = 127.2 and 150.1 GeV and physical Higgs masses
mH = 52.35 and 64.55 GeV of the 4d theory without top
for the lower and larger M∗

H . The four dimensional MS
gauge coupling g2(mW ) has the value 0.423 and 0.422,
respectively, which is close to that of the standard model.

Our present result for the case of M∗
H = 70 GeV is

larger by a factor 3.3 than the previous rough estimate
[5]. The latter was obtained as a result of our equal weight
histogram method, finally based on a global infinite vol-
ume extrapolation of the mixed phase thermodynamical
weight for lattices of various aspect ratios.
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Table 3. Corrections in (6) of [5]

M∗
H = 57 GeV M∗

H = 57 GeV
without fermions with top

∆g -0.01322 6.712× 10−5

∆λ -0.02383 1.494
∆ν -0.02938 0.9443
∆Y -0.01301

Fig. 4. Scaling law for the mass gap followed by data at mH =
35 GeV (open squares) [9], mH = 49 GeV (open circles) [8],
M∗

H = 57 GeV (full circles) and M∗
H = 70 GeV (full squares)

[this work]

In the present fits we obtain effective exponents γ =
0.25(11) and 0.095(45) of L, respectively, which become
smaller with decreasing strength of the transition. Fixing
the exponent to γ = 1 as suggested by (4) we would be
able to present only a local fit to the few highest transverse
areas L2. The interface tensions would be estimated by
this fit as follows: α3/g

4
3 = 0.023 for M∗

H = 57 GeV and
0.016 for M∗

H = 70 GeV. In the first case this would be
still acceptable comparing with the result of the Helsinki
group [13] for that Higgs mass. But the interface tension
evaluated at M∗

H = 70 GeV in this way does not follow
the general trend of the interface tensions from d = 3
simulations which have been collected in [18].

In view of the arguments above, we consider the fit
with the free ansatz (7) more serious than the results of
the fit confined to γ = 1. We recall that also in [8] the
latter fit has been successful only at large values of the
scaling variable x = αL2a2/Tc. The one–loop scaling law
(6) was meant to hold independent of the particular sys-
tem, irrespective of the actual value of the interface ten-
sion. With the values of α obtained now and in [8,9] the
underlying mass gaps for various Higgs masses and trans-
verse lattice sizes seem to follow another universal law if
expressed through the scaling variable x

mlat L = C ′ exp(−x) (13)

instead of (13), except for the smallest transverse exten-
sions L in each case. This can be seen in Fig. 4. In this
figure we also show the asymptotic behaviour (6) with
C = 1.352 as predicted by [7,19].

There is one warning in the data concerning the ap-
plicability of the analytical formulae used throughout the
literature in order to extract the interface tension from lat-
tice data of the tunneling correlation length. As mentioned
above it is implicitly assumed that the correlation lengths
of the two phases in equilibrium are small compared to
the tunneling correlation length. From this point of view
the present data on mlat for M∗

H = 70 GeV (where we
have measured Higgs masses separately for both phases at
the transition temperature) indicate that transverse sizes
L ≤ 10 would have to be excluded from the analysis.

The other concern is caused by the fact that the trans-
verse correlation length ξ⊥ does not decouple from the
transverse lattice extension at small L and keeps grow-
ing for all transverse sizes considered. For instance, at
M∗

H = 70 GeV, the transverse correlation length amounts
from 75 to 83 per cent of L on our lattices with transverse
sizes L ≥ 10 which are, on the other hand, the only accept-
able ones in view of the criticism discussed before. In the
case of M∗

H = 57 GeV the transverse correlation length is
even larger compared with the transverse size L (100 to
130 per cent) on lattices with L ≥ 10. It should be men-
tioned that the ratio of the transverse correlation length
to the transverse size is consistent with the ratio of the
bulk correlation length to the system size for cubic sym-
metries on top of the phase transition (measured without
separating the Monte Carlo sample into pure phase con-
figurations).

4 Overview and conclusions

To compare our 3d results for the interface tension with
those of 4d measurements we follow the procedure outlined
in [20]. The measurements in the 4d approach have been
performed at a different gauge coupling. The measured
renormalised gauge couplings do not seem to change sig-
nificantly with the Higgs mass in the so far reported region
from 18 to 49 GeV [10,21] and vary from 0.56 to 0.59. For
simplicity (and due to missing calculation) it is assumed
as in [20] that the measured renormalised gauge coupling
roughly corresponds to the MS running coupling. It is then
different from the value g2(mW ) = 0.42 corresponding to
our calculations described in the last section.

Using the prescription to relate 3d and 4d parameters
[5] we calculate Higgs masses, critical temperatures and
interface tensions for increasing 4d gauge couplings keep-
ing the respective λ3/g

2
3 fixed. The numbers are collected

in Table 4. Note that the Higgs mass is slightly moving to
lower values while the ratio α/T 3

c becomes much bigger,
largely due to the critical temperature getting smaller.

Having the caveats of the last section in mind we com-
pare now in Fig. 5 our interface tensions α with those
measured by different methods in the 4d theory at various
Higgs masses as function of the physical Higgs mass mH .
In order to do this we read for our 3d data (full points) the
corresponding Higgs mass (without fermion contributions)
from Table 4, for example at g2(mW ) = 0.58. This value
has been deduced as mentioned above from the measured
renormalised gauge coupling.
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Table 4. Higgs masses, critical temperatures and interface
tensions for various 4d running gauge couplings

M∗
H/GeV g2(mW ) mH/GeV Tc/GeV α/T 3

c

57 0.423 52.35 127.2 0.00324(081)
0.560 50.86 108.2 0.00539(134)
0.570 50.75 107.1 0.00556(138)
0.580 50.64 106.0 0.00574(143)
0.590 50.54 104.9 0.00592(147)

70 0.422 64.55 150.1 0.00070(26)
0.560 62.99 128.1 0.00115(43)
0.570 62.88 126.8 0.00119(45)
0.580 62.76 125.5 0.00122(46)
0.590 62.65 124.3 0.00126(47)

Fig. 5. Collected results on the interface tension as function
of the Higgs mass

In the 4d data the Higgs masses are either measured
[10,8,11,9,12] (no errors are taken into account in the hor-
izontal scale) or estimated [3]. The agreement between the
various approaches in 3d and 4d is remarkable if the 3d and
4d parameters are correctly mapped onto each other. This
nicely demonstrates the validity of dimensional reduction
in the considered Higgs mass range.

Our new data points are the following ones, expressed
in terms of the 3–dimensional and the 4–dimensional in-
terface tensions. We find at λ3/g

2
3 = 0.0644457, g2(mW ) =

0.423 and βG = 12 (M∗
H = 57 GeV)

α3/g
4
3 = 0.0224(56), α/T 3

c = 3.24(80)× 10−3 (14)

and at λ3/g
2
3 = 0.095703, g2(mW ) = 0.422 and βG = 12

(M∗
H = 70 GeV)

α3/g
4
3 = 0.0049(18), α/T 3

c = 70(26)× 10−5. (15)

We observe an approximate scaling law expressing the
energy gap for all Higgs masses in terms of the dimension-
less variable x (see (5)) without the prefactor

√
x which

had been suggested by one–loop perturbation theory for
interfaces in the case of binary systems.

We emphasise that the tunneling correlation length
method works well even near to the critical Higgs mass
where other methods relying on discrimination of histo-
gram peaks and minima are already difficult to apply.
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and T. Yoshié: Phys. Rev. D49 (1994) 3540
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